KA278RXXC-Series
2A Output Low Dropout Voltage Regulators

Features

KA278RXXC-series (33/05/51/09/12)
- 2A/3.3V, 5V, 5.1V, 9V, 12V output low dropout voltage regulator
- TO-220 full-mold package (4pin)
- Overcurrent protection, thermal shutdown
- Overvoltage protection, short circuit protection
- With output disable function

KA278RA05C
- Nominal 5V output without adjusting
- Output adjustable between 1.25V and 32V
- 2A output low dropout voltage regulator
- TO-220 full-mold package (4pin)
- Overcurrent protection, thermal shutdown
- Overvoltage protection, short circuit protection

Description

The KA278RXXC is a low-dropout voltage regulator suitable for various electronic equipments. It provides constant voltage power source with TO-220-4 lead full mold package. The dropout voltage of KA278RXXC is below 0.5V in full rated current (2A). This regulator has various functions such as a peak current protection, a thermal shutdown, an overvoltage protection.

Internal Block Diagram

(KA278R33/05/51/09/12C)
(KA278RA05C)
Absolute Maximum Ratings

KA278RXXC, KA278RA05C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>Vin</td>
<td>35</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Disable voltage KA278RXXC</td>
<td>Vdis</td>
<td>35</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Output current</td>
<td>Io</td>
<td>2.0</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Power dissipation 1</td>
<td>Pd1</td>
<td>1.5</td>
<td>W</td>
<td>No heatsink</td>
</tr>
<tr>
<td>Power dissipation 2</td>
<td>Pd2</td>
<td>15</td>
<td>W</td>
<td>With heatsink</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>Tj</td>
<td>150</td>
<td>°C</td>
<td>-</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Topr</td>
<td>-20~80</td>
<td>°C</td>
<td>-</td>
</tr>
<tr>
<td>Thermal resistance, junction-to case (note2)</td>
<td>R(\theta_{jc})</td>
<td>2.9</td>
<td>°C/W</td>
<td>-</td>
</tr>
<tr>
<td>Thermal resistance, junction-to-air (note2)</td>
<td>R(\theta_{ja})</td>
<td>48.51</td>
<td>°C/W</td>
<td>-</td>
</tr>
</tbody>
</table>
Electrical Characteristics

(Vin=Note3, Io=1.0A, Ta=25°C , unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>KA278R33C</td>
<td>Vo</td>
<td>3.22</td>
<td>3.3</td>
<td>3.38</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>KA278R05C</td>
<td>-</td>
<td>4.88</td>
<td>5</td>
<td>5.12</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>KA278R51C</td>
<td>-</td>
<td>4.98</td>
<td>5.1</td>
<td>5.22</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>KA278R09C</td>
<td>-</td>
<td>8.78</td>
<td>9</td>
<td>9.22</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>KA278R12C</td>
<td>-</td>
<td>11.7</td>
<td>12</td>
<td>12.3</td>
<td>V</td>
</tr>
<tr>
<td>Load regulation</td>
<td>Rload</td>
<td>5mA < Io < 2A</td>
<td>-</td>
<td>0.1</td>
<td>2.0</td>
<td>%</td>
</tr>
<tr>
<td>Line regulation</td>
<td>Rline</td>
<td>Note4</td>
<td>-</td>
<td>0.5</td>
<td>2.5</td>
<td>%</td>
</tr>
<tr>
<td>Ripple rejection ratio</td>
<td>RR</td>
<td>Note1</td>
<td>45</td>
<td>55</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Dropout voltage</td>
<td>Vdrop</td>
<td>Io = 2A</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>Disable voltage high</td>
<td>VdisH</td>
<td>Output active</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Disable voltage low</td>
<td>VdisL</td>
<td>Output disabled</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>Disable bias current high</td>
<td>Idish</td>
<td>Vdis = 2.7V</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>µA</td>
</tr>
<tr>
<td>Disable bias current low</td>
<td>Idisl</td>
<td>Vdis = 0.4V</td>
<td>-</td>
<td>-</td>
<td>-0.4</td>
<td>mA</td>
</tr>
<tr>
<td>Quiescent current</td>
<td>Iq</td>
<td>Io = 0A</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Reference voltage</td>
<td>Vref</td>
<td></td>
<td>1.24</td>
<td>1.27</td>
<td>1.30</td>
<td>V</td>
</tr>
</tbody>
</table>

Note:
1. These parameters, although guaranteed, are not 100% tested in production.
 - Pneumatic heat sink fixture.
 - Clamping pressure 60psi through 12mm diameter cylinder.
 - Thermal grease applied between PKG and heat sink fixture.
3. KA278R33C : Vin = 5V
 KA278R05C : Vin = 7V
 KA278R09C : Vin = 11V
 KA278R12C : Vin = 15V
4. KA278R33C : Vin =4 to 10V
 KA278R05C, KA278R51C : Vin=6 to 12V
 KA278R09C : Vin=10 to 25V
 KA278R12C : Vin = 13V to 29V
Typical Performance Characteristics

KA278R33C

Figure 1. Output Voltage vs. Input Voltage

Figure 2. Quiescent Current vs. Input Voltage

Figure 3. Output Voltage vs. Disable Voltage

Figure 4. Output Voltage vs. Temperature (Tj)

Figure 5. Quiescent Current vs. Temperature (Tj)

Figure 6. Dropout Voltage vs. Junction Temperature
Typical Performance Characteristics (Continued)

Figure 7. Power Dissipation vs. Temperature (Tj)

Figure 8. Overcurrent Protection Characteristics (Typical Value)

Figure 9. Output Peak Current vs. Input-Output Differential Voltage
Typical Performance Characteristics (Continued)

KA278R05C

Figure 1. Output Voltage vs. Input Voltage

Figure 2. Quiescent Current vs. Input Voltage

Figure 3. Output Voltage vs. Disable Voltage

Figure 4. Output Voltage vs. Temperature (Tj)

Figure 5. Quiescent Current vs. Temperature (Tj)

Figure 6. Dropout Voltage vs. Junction Temperature
Typical Performance Characteristics (Continued)

Figure 7. Power Dissipation vs. Temperature(Tj)

Figure 8. Overcurrent Protection Characteristics (Typical Value)

Figure 9. Output Peak Current vs. Input-Output Differential Voltage
Typical Performance Characteristics (Continued)

KA278R51C

Figure 1. Output Voltage vs. Input Voltage

Figure 2. Quiescent Current vs. Input Voltage

Figure 3. Output Voltage vs. Disable Voltage

Figure 4. Output Voltage vs. Temperature(Tj)

Figure 5. Quiescent Current vs. Temperature(Tj)

Figure 6. Dropout Voltage vs. Junction Temperature
Typical Performance Characteristics (Continued)

Figure 7. Power Dissipation vs. Temperature(Tj)

Figure 8. Overcurrent Protection Characteristics (Typical value)

Figure 9. Ripple Rejection vs. Input Ripple Frequency

Figure 10. Line Transient Response

Figure 11. Load Transient Response

Figure 12. Output Peak Current vs. Input-Output Differential Voltage
Typical Performance Characteristics (Continued)

KA278R09C

Figure 1. Output Voltage vs. Input Voltage

Figure 2. Quiescent Current vs. Input Voltage

Figure 3. Output Voltage vs. Disable Voltage

Figure 4. Output Voltage vs. Temperature(Tj)

Figure 5. Quiescent Current vs. Temperature(Tj)

Figure 6. Dropout Voltage vs. Junction Temperature
Typical Performance Characteristics (Continued)

Figure 7. Power Dissipation vs. Temperature(T_j)

Figure 8. Overcurrent Protection Characteristics (Typical Value)

Figure 9. Output Peak Current vs. Input-Output Differential Voltage
Typical Performance Characteristics (Continued)

KA278R12C

![Graph 1: Output Voltage vs. Input Voltage](image1)

![Graph 2: Quiescent Current vs. Input Voltage](image2)

![Graph 3: Output Voltage vs. Disable Voltage](image3)

![Graph 4: Output Voltage vs. Temperature (Tj)](image4)

![Graph 5: Quiescent Current vs. Temperature (Tj)](image5)

![Graph 6: Dropout Voltage vs. Junction Temperature](image6)
Typical Performance Characteristics (Continued)

Figure 7. Power Dissipation vs. Temperature (Tj)

Figure 8. Overcurrent Protection Characteristics (Typical Value)

Figure 9. Output Peak Current vs. Input-Output Differential Voltage
Typical Performance Characteristics (Continued)

KA278RA05C

Figure 1. Output Voltage vs. Input Voltage

Figure 2. Quiescent Current vs. Input Voltage

Figure 3. Output Voltage vs. Temperature (Tj)

* Fixed Mode (Vo=5V)

Figure 4. Quiescent Current vs. Temperature (Tj)

Figure 5. Dropout Voltage vs. Junction Temperature

Figure 6. Power Dissipation vs. Temperature (Tj)
Typical Performance Characteristics (Continued)

Figure 7. Overcurrent Protection Characteristics (Typical value)

Figure 8. Output Peak Current vs. Input-Output Differential Voltage
Typical Application

KA278R33/05/09/12C

• Ci is required if regulator is located at an appreciable distance from power supply filter.
• Co improves stability and transient response. (Co > 47 µF)

KA278RA05

\[
V_o = 1.25 \left(1 + \frac{R_1//R_3}{R_2//R_4} \right) \quad R_1 = 1.8\,k\Omega, \quad R_2 = 0.6\,k\Omega
\]

• Ci is required if regulator is located at an appreciable distance from power supply filter.
• Co improves stability and transient response. (Co > 47 µF)
Mechanical Dimensions

Package

Dimensions in millimeters

TO-220F-4L
Package

TO-220F-4L (Forming)

Dimensions in millimeters
Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

TO-220F-4L(Short Lead)

[Diagram of TO-220F-4L(Short Lead) package dimensions]

1. THESE DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION.
2. () IS REFERENCE
3. [] IS ASS’Y OUT QUALITY
Ordering Information

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Package</th>
<th>Operating Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA278R33CTU</td>
<td>TO-220F-4L</td>
<td>-20°C to +80°C</td>
</tr>
<tr>
<td>KA278R05CTU</td>
<td>TO-220F-4L</td>
<td></td>
</tr>
<tr>
<td>KA278R09CTU</td>
<td>TO-220F-4L</td>
<td></td>
</tr>
<tr>
<td>KA278R12CTU</td>
<td>TO-220F-4L</td>
<td></td>
</tr>
<tr>
<td>KA278RA05CTU</td>
<td>TO-220F-4L</td>
<td></td>
</tr>
<tr>
<td>KA278R05CYDTU</td>
<td>TO-220F-4L(Forming)</td>
<td></td>
</tr>
<tr>
<td>KA278R12CYDTU</td>
<td>TO-220F-4L(Short Lead)</td>
<td></td>
</tr>
<tr>
<td>KA278R33CTSTU</td>
<td>TO-220F-4L</td>
<td></td>
</tr>
<tr>
<td>KA278R05CTSTU</td>
<td>TO-220F-4L</td>
<td></td>
</tr>
<tr>
<td>KA278R12CTSTU</td>
<td>TO-220F-4L</td>
<td></td>
</tr>
</tbody>
</table>

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.