Digchip : Database on electronics components
Electronics components database



Details, datasheet, quote on part number: 5962F9675601VPA
 
 
Part number5962F9675601VPA
CategoryAnalog & Mixed-Signal Processing => Amplifiers => Current Feedback
DescriptionRadiation Hardened, Ultra High Speed Current Feedback Amplifier With Offset Adjust
CompanyIntersil Corporation
DatasheetDownload 5962F9675601VPA datasheet
Request For QuoteFind where to buy 5962F9675601VPA
 


 
Specifications, Features, Applications

Radiation Hardened, Ultra High Speed Current Feedback Amplifier with Offset Adjust
Description

The is a radiation hardened, high speed, wideband, fast settling current feedback amplifier. These devices are QML approved and are processed and screened in full compliance with MIL-PRF-38535. Built with Intersil' proprietary, complementary bipolar UHF-1 (DI bonded wafer) process, it is the fastest monolithic amplifier available from any semiconductor manufacturer. The HS-1120RH's wide bandwidth, fast settling characteristic, and low output impedance, make this amplifier ideal for driving fast A/D converters. Additionally, it offers offset voltage nulling capabilities as described in the "Offset Adjustment" section of this datasheet. Component and composite video systems will also benefit from this amplifier's performance, as indicated by the excellent gain flatness, and 0.03%/0.05 Degree Differential Gain/Phase specifications (RL = 75). Detailed electrical specifications are contained in SMD 5962F9675601VPA, available on the Intersil Website or AnswerFAX systems (document #967560) A Cross Reference Table is available on the Intersil Website for conversion of Intersil Part Numbers to SMDs. The address is (http://www.intersil.com/datasheets/smd/smd_xref. html). SMD numbers must be used to order Radiation Hardened Products.

Features

· Electrically Screened to SMD 5962F9675601VPA· MIL-PRF-38535 Class V Compliant· Low Distortion 30MHz). -84dBc (Typ)· Wide -3dB Bandwidth. 850MHz (Typ)· Very High Slew Rate. 2300V/µs (Typ)· Fast Settling (0.1%). 11ns (Typ)· Excellent Gain Flatness (to 50MHz). 0.05dB (Typ)· High Output Current. 65mA (Typ)· Fast Overdrive Recovery. <10ns (Typ)· Total Gamma Dose. 300K RAD (Si)· Latch Up. None (DI Technology)

Applications

· Video Switching and Routing· Pulse and Video Amplifiers· Wideband Amplifiers· RF/IF Signal Processing· Flash A/D Driver· Imaging Systems

PART NUMBER 5962F9675601VPA HFA1100IJ (Sample) HFA11XXEVAL TEMP. RANGE (oC) to 85 PACKAGE 8 Ld CERDIP 8 Ld CERDIP PKG. NO. GDIP1-T8 F8.3A

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 321-724-7143 | Copyright © Intersil Corporation 1999

Optimum Feedback Resistor The enclosed plots of inverting and non-inverting frequency response illustrate the performance of the HS-1120RH in various gains. Although the bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and RF. All current feedback amplifiers require a feedback resistor, even for unity gain applications, and , in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to RF. The HS-1120RH design is optimized for at a gain of +1. Decreasing in a unity gain application decreases stability, resulting in excessive peaking and overshoot. At higher gains the amplifier is more stable, so RF can be decreased in a tradeoff of stability for bandwidth. The table below lists recommended RF values for various gains, and the expected bandwidth.

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor (RS) in series with the output prior to the capacitance. Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the RS and CL combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance. RS and CL form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth 850MHz. By decreasing RS as CLincreases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. Even so, bandwidth does decrease as you move to the right along the curve. For example, = 30pF, the overall bandwidth is limited to 300MHz, and bandwidth drops = 340pF.

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must! Attention should be given to decoupling the power supplies. A large value (10µF) tantalum in parallel with a small value (0.1µF) chip capacitor works well in most cases. Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section. Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. To this end, it is recommended that the ground plane be removed under traces connected to -IN, and connections to -IN should be kept as short as possible. An example of a good high frequency layout is the Evaluation Board shown in Figure 2.

FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE

The performance of the HS-1120RH may be evaluated using the HFA11XXEVAL Evaluation Board. The layout and schematic of the board are shown in Figure 2. To order evaluation boards, please contact your local sales office.

The output offset voltage of the HS-1120RH may be nulled via connections to the BAL pins. Unlike a voltage feedback amplifier, offset adjustment is accomplished by varying the sign and/or magnitude of the inverting input bias current (-IBIAS). With voltage feedback amplifiers, bias currents are matched and bias current induced offset errors are nulled by matching the impedances seen at the positive and negative inputs. Bias

currents are uncorrelated on current feedback amplifiers, so this technique is inappropriate. -IBIAS flows through RF causing an output offset error. Likewise, any change in -IBIAS forces a corresponding change in output voltage, providing the capability for output offset adjustment. By nulling -IBIAS to zero, the offset error due to this current is eliminated. In addition, an adjustment limit greater than the -IBIAS limit allows the user to null the contributions from other error sources, such as VIO, or +IN source impedance. For example, the excess adjust current of 50µA [IBNADJ (Min) - IBSN (Max)] allows for the nulling of an additional 26mV of output offset error (with 510) at room temperature. The amount of adjustment is a function , so adjust range increases with increased RF. If allowed by other considerations, such as bandwidth and noise, RF can be increased to provide more adjustment range. The recommended offset adjustment circuit is shown in Figure 3.




Related products with the same datasheet
5962F9676701VPA  


Some Part number from the same manufacture Intersil Corporation
5962F9676701VPA Radiation Hardened, Ultra High Speed Current Feedback Amplifier With Offset Adjust
5962F9676701VPC Radiation Hardened, High Speed, Low Power Current Feedback Amplifier With Programmable Output Limiting
5962F9678501VPA Radiation Hardened, High Speed, Low Power Output Limiting, Closed-loop-buffer Amplifier
5962F9683001VPA Radiation Hardened, High Speed, Low Power, Current Feedback Video Operational Amplifier With Output Disable
5962F9683201VCA Radiation Hardened, Dual, High Speed, Low Power Video Operational Amplifier With Output Disable
5962F9751201V9A Rad Hard Dual, Wideband, High Input Impedance Uncompensated Operational Amplifier
5962F9764101VEA Radiation Hardened Ultra High Frequency NPN Transistor Array
5962F9800701VEC Radiation Hardened Dual 4-input Multiplexer With Three-state Outputs
5962F9800801VEC Radiation Hardened Quad 2-input Multiplexer With Three-state Outputs
5962F9851801VXC Radiation Hardened, High Speed, Low Power, Current Feedback op Amp With Output Disable
5962F9854001VRC Radiation Hardened Inverting, Octal, Three-state Buffer/line Driver
5962F9854101VRC Radiation Hardened Non-inverting, Octal, Three-state Buffer/line Driver
5962F9860101V9A Radiation Hardened Quad 2-input NOR GATE
5962F9860201V9A Radiation Hardened Hex Inverter With Open Drain Outputs
5962F9860301V9A Radiation Hardened Hex Inverter
5962F9861301QCC Radiation Hardened Quad Voltage Comparator
5962F9862201V9A Radiation Hardened Triple 3-input And Gate
5962F9862301V9A Radiation Hardened Hex Inverting Schmitt Trigger
5962F9862401V9A Radiation Hardened Quad 2-input OR GATE
5962F9862501V9A Radiation Hardened Quad 2-input NAND Schmitt Trigger
5962F9862901V9A Radiation Hardened Dual 4-input And Gate